Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Differentiation Rules

Table of contents
  1. Differentiation Rules
    1. Basic Rules
    2. Chain Rule
    3. References

Objectives

The Basic Rules

  • List of basic rules
  • Examples

Chain Rule

  • Definition
  • Applications

Higher deriviation

  • Definition

Basic Rules

Constant law
(cf(x))=cf(x) \left(cf(x)\right)^\prime=cf^\prime\left(x\right)
(limxacf(x)=climxaf(x)) \left(\lim_{x\to a}{cf(x)} = c\lim_{x\to a}{f(x)} \right)
Sum/Diff law
(f(x)±g(x))=f(x)±g(x) \left(f(x) \pm g(x)\right)^\prime=f^\prime\left(x\right)\pm g^\prime\left(x\right)
(limxa[f(x)±g(x)]=limxaf(x)±limxag(x)) \left(\lim_{x\to a}{\left[f(x)\pm g(x)\right]} = \lim_{x\to a}{f(x)}\pm\lim_{x\to a}{g(x)}\right)
Power law
(xn)=nxn1 \left(x^n\right)^\prime = nx^{n-1}
(limxa[f(x)]n=[limxaf(x)]n) \left(\lim_{x\to a}{\left[f(x)\right]^n} = \left[\lim_{x\to a}{f(x)}\right]^n\right)
Product law
(fg)=fg+gf \left(fg\right)^\prime=f^\prime g + g^\prime f
(limxa[f(x)g(x)]=limxaf(x)limxag(x)) \left(\lim_{x\to a}{\left[f(x)\cdot g(x)\right]} = \lim_{x\to a}{f(x)}\cdot\lim_{x\to a}{g(x)}\right)
Quotient law
(fg)=fgfgg2 \left(\frac{f}{g}\right) = \frac{f^\prime g - fg^\prime}{g^2}
(limxa[f(x)g(x)]=limxaf(x)limxag(x)) \left(\lim_{x\to a}{\left[\frac{f(x)}{g(x)}\right]} = \frac{\lim_{x\to a}{f(x)}}{\lim_{x\to a}{g(x)}}\right)

Chain Rule

Suppose there are two functions ff and gg, both are differentiable:

  1. If there is a function h:h(x)=g(f(x))h: h(x) = g(f(x)), then hh is called a composite function
  2. The composite function hh is denoted as: h=gfor(gf)(x)=g(f(x))h=g\circ f \quad \text{or} \quad (g\circ f)(x) = g(f(x))
  3. The derivative of the composite function: h(x)=g(f(x))f(x)ordhdx=dhdfdfdxh^\prime(x) = g^\prime(f(x))f^\prime(x) \quad\text{or}\quad \frac{dh}{dx} = \frac{dh}{df}*\frac{df}{dx}

References