Skip to main content Link Menu Expand (external link) Document Search Copy Copied
Table of contents
  1. Preprequisites
    1. Exponentiation operation
    2. Power function
  2. Euler’s number ee
  3. Exponential and Logarithmic functions
    1. Concept and Properties
  4. References

Objectives

Exponential and Logarithmic Functions

  • Definition
  • Properties

Preprequisites

Exponentiation operation

Exponentiation, involving two components: the base (bb) and the power (nn) defined as bn=b××bn times b^n = \underbrace{b\times \dots \times b}_{n\ \text{times}}

Properties of the exponentiation consists of:

  • ap+q=apaqa^{p+q} = a^p \cdot a^q
  • (ab)q=aqbq(a\cdot b)^q = a^q \cdot b^q
  • (ab)q=aqbq\left(\frac{a}{b}\right)^q = \frac{a^q}{b^q}
  • (ap)q=apq\left(a^p\right)^q = a^{pq}

Suppose nQn \isin \mathbb{Q}, the concept of exponentiation and its properties could also be expanded to nRn \isin \mathbb{R} by using the limit theory.

Power function

f(x)=cxn f(x) = cx^n

Relation Name Shape
xxx\mapsto x Identity, Linear
xx2x\mapsto x^2 Quadratic
xx12x\mapsto x^{\frac{1}{2}} Square root
xx1x\mapsto x^{-1} Reciprocal

Euler’s number ee

By concept, the number ee or Euler’s number, is a mathematical constant which is an irrational number of

e=2.71828182845904523536028747135266249775724709369995 e = 2.71828182845904523536028747135266249775724709369995\dots

There are multiple approaches existed to explain the origin of this “unique” constant (just like how π\pi is the ratio between circumference and diameter of any circle). However, this note will limit the scope to two explanations (or characterization) of this special constant:

  • ee as a base rate of exponential growth (Azad, 2021)
  • The higher boundary for Area under the curve of 1x\frac{1}{x} to be equal 1.

Rate of exponential growth

Suppose there is an exponential function

f(x)=ax,xR f(x) = a^x, x\isin \mathbb{R}

The first look into this function’s instant rate of change is:

dfdx=limΔx0ax+ΔxaxΔx=ax(limt0at1t)=ax(f(0))(1) \begin{aligned} \frac{df}{dx} &= \lim_{\Delta{x}\to 0}{\frac{a^{x+\Delta{x}}-a^x}{\Delta{x}}}\\ &= a^x\left(\lim_{t\to 0}{\frac{a^t-1}{t}}\right)\\ &= a^x\left(f^\prime(0)\right) & (1) \end{aligned}

By observation, the instant change ratio of f(x)f(x) at x=x0x=x_0 is a product of the f(x0)f(x_0) and a constant of limt0at1t\lim_{t\to 0}{\frac{a^t-1}{t}} or f(0)f^\prime(0)

Base (aa) limt0at1t\lim_{t\to 0}{\frac{a^t-1}{t}}
2 0.69314720407
3 1.09861234998
4 1.38629445701
6 1.79176007364
ee 1

Due to the unique property of ee of having limt0et1t=ddx(ex)x=0=e0=1(2) \begin{aligned} \lim_{t\to 0}{\frac{e^t-1}{t}} &= \frac{d}{dx}\left(e^x\right)\big|_{x=0}\\ &= e^0 \\ &= 1 && (2) \end{aligned}

This fact could be proved in a non-circular manner.

The property also makes the computation of derivative of f(x)=axf(x) = a^x easier by just transforming every power function ata^t to etlnae^{t\ln{a}} and let h=tlnah = t\ln{a}:

limt0at1t=lnalimtlna0(etlna1tlna)=lnalimh0(eh1h)Result =1=lna(3) \begin{aligned} \lim_{t\to 0}{\frac{a^t-1}{t}} &= \ln{a}\cdot \lim_{t\ln{a}\to 0}{\left(\frac{e^{t\ln{a}}-1}{t\ln{a}}\right)}\\ &= \ln{a}\cdot \underbrace{\lim_{h\to 0}{\left(\frac{e^h-1}{h}\right)}}_{\text{Result =}1}\\[1.5em] &= \ln{a} & (3) \end{aligned}

Thanks to ee and its special character at (2)(2), the expression (1)(1) could be computed for all base of aRa\isin\mathbb{R} by converting bb to a power function of base ee

a=exp(lna) a = \exp{(\ln{a})}


The second picture on exponential growth: Compound Growth

Suppose the intial value is VV and the growth rate per period is RR

Period Value Before Value After
1 VV V+VR=V(1+R)V+VR = V(1+R)
2 V(1+R)V(1+R) V(1+R)+RV(1+R)=V(1+R)2V(1+R) + R\cdot V(1+R) = V(1+R)^2
   
n V(1+R)n1V(1+R)^{n-1} V(1+R)nV(1+R)^n

Every period, the growth amount will grows at the same rate to contribute to the initial value, hence the term Compound growth.

Vn=V0(1+R)n(1)orVn=V0(1+rate)period \begin{aligned} && V_n &= V_0\cdot (1+R)^n & (1)\\ &\text{or} & V_n &= V_0\cdot (1 + \text{rate})^{\text{period}} \end{aligned}

In the right side of the equation (1)(1), suppose R=1nR = \frac{1}{n} and V0=1V_0 = 1, then we have a special expression of:

f(n)=(1+1n)n f(n) = \left(1+\frac{1}{n}\right)^n

\rule{20em}{0.3pt}

Investigating the behavior of f(n)f(n) expose a few interesting insights:

  1. The higher nn, the higher f(n)f(n)
  2. f(n)f(n) seems to approach a certain limit with larger nn

\rule{20em}{0.3pt}

Point #2 and the value of the limit mentioned a fact of:

limn(1+1n)n=cc is a constant \lim_{n\to \infty}{\left(1+\frac{1}{n}\right)^n} = c \quad\quad c \text{ is a constant}

Hint: c=ec = e

Solution:

ln[limn(1+1n)n]=nlimn[ln(1+1n)]=lim1n0[ln(1+1n)1n]Result =  1    limn(1+1n)n=e \begin{aligned} &&\ln{\left[\lim_{n\to\infty}{\left(1 + \frac{1}{n}\right)^n}\right]} &= n\cdot\lim_{n\to\infty}{\left[\ln{\left(1+\frac{1}{n}\right)}\right]}\\ &&&=\underbrace{\lim_{\frac{1}{n}\to 0}{\left[\frac{\ln{\left(1 + \frac{1}{n}\right)}}{\frac{1}{n}}\right]}}_{\text{Result = }\ 1}\\ &\iff & \lim_{n\to \infty}{\left(1+\frac{1}{n}\right)^n} = e \end{aligned}

The concept could be generalized further into:

limn(1+rn)n=er \lim_{n\to\infty}{\left(1 + \frac{r}{n}\right)^n} = e^r

Area under the curve of y=1xy = \frac{1}{x}

euler_number_proof

Figure 1: Area under the curve of 1x\frac{1}{x} (Singh, 2021)

The second popular characterization of ee is using Geometry, to be specific, the area under the curve of y=1/xy = 1/x

To approximate the area under the curve of y=1/xy=1/x in which x>0x > 0, let seperate the area into adjacent rectangles with the base of Δx=1\Delta{x} = 1 and height of 1/x01/{x_0}. In other words, he are under the curve, which we will called A\mathbf{A}, consists of infinite smaller rectangles with base 11:

A=i=1A(i,i+1)i=0(Δxi)i=0(1i) \begin{aligned} \mathbf{A} &= \sum_{i=1}^{\infty}{\mathbf{A}(i, i+1)}\\ &\approx \sum_{i=0}^{\infty}{\left(\frac{\Delta{x}}{i}\right)}\\ &\approx \sum_{i=0}^{\infty}{\left(\frac{1}{i}\right)} \end{aligned}

The smaller the base is, the more accurate the area sum becomes:

A(a,b)=limΔx0[i=0a+iΔxb(Δxa+iΔx)] \mathbf{A}(a,b) = \lim_{\Delta{x}\to 0}{\left[\sum_{i=0}^{a+i\Delta{x} \leq b}{\left(\frac{\Delta{x}}{a+i\Delta{x}}\right)}\right]}

Suppose we have a transformation ϕ:(x,y)(2x,y/2)\phi : (x, y) \mapsto (2x, y/2). As (2x0,1/2x0)(2x_0, 1/{2x_0}) is also located on the curve of y=1/xy=1/x and the area of every member rectangle before the transformation remains the same after the transformation (base doubled, height halved), we clearly see that:

A(a,b)=A(2a,2b)(Figure 1 - left)=A(ka,kb)kR \begin{aligned} \mathbf{A}(a,b) &= \mathbf{A}(2a,2b) & \text{(Figure 1 - left)}\\ &= \mathbf{A}(ka, kb) & k\isin\mathbb{R} \end{aligned}

In other words

A(1,ab)=A(1,a)+A(a,ab)=A(1,a)+A(1,b) \begin{aligned} \mathbf{A}(1,ab) &= \mathbf{A}(1, a) + \mathbf{A}{(a,ab)}\\ &= \mathbf{A}(1,a) + \mathbf{A}(1,b) \end{aligned}

… which is similar to a property of logarithm functions:

lnab=lna+lnb \ln{ab} = \ln{a} + \ln{b}

Applications

WIP

Compound interest

Bernoulli trials

Standard normal distribution

Exponential and Logarithmic functions

Concept and Properties

Concept:exp:RR+ ln:R+RMonotonicity:strictly increasing strictly increasingContinuity:continuous continuousDifferentiability:differentiable differentiableSpecial cases:exp(1)=eexp(0)=1 ln(e)=1ln(1)=0Arithmetics:exp(x+y)=expxexpyexp(x)=1expxln(xy)=lnx+lnyln1x=lnxLimit:limx0exp(x)1x=1 limx0ln(1+x)x=1Differentiation:ddxexp(x)=exp(x) ddxln(x)=1xFunction by limit:exp(x)=limn(1+xn) limnn(xn1)Function by series:exp(x)=n=0xnn! xR ln(1+x)=n=1(1)n1xnn x(1,1] \begin{aligned} \footnotesize{\sf{\text{Concept:}}} &&\exp: \mathbb{R} \mapsto \mathbb{R}^+ &&\ &&\ln: \mathbb{R}^+\mapsto\mathbb{R}\quad\\ \footnotesize{\sf{\text{Monotonicity:}}} &&\text{strictly increasing} &&\ &&\text{strictly increasing}\quad\\ \footnotesize{\sf{\text{Continuity:}}} &&\text{continuous} &&\ &&\text{continuous}\quad\\ \footnotesize{\sf{\text{Differentiability:}}} &&\text{differentiable} &&\ &&\text{differentiable}\quad\\ \footnotesize{\sf{\text{Special cases:}}} &&\begin{aligned}\exp{(1)} = \boldsymbol{e}\\\exp{(0)}=1\end{aligned} &&\ &&\begin{aligned}\ln{(\boldsymbol{e})} = 1\\\ln{(1)}=0\end{aligned}\quad\\ \footnotesize{\sf{\text{Arithmetics:}}} &&\begin{aligned}\exp{(x+y)}=\exp{x}\cdot\exp{y}\\\exp{(-x)}=\frac{1}{\exp{x}}\end{aligned} &&\quad && \begin{aligned}\ln{(x\cdot y)}=\ln{x}+\ln{y}\\\ln{\frac{1}{x}}=-\ln{x}\end{aligned}\quad\\ \footnotesize{\sf{\text{Limit:}}} && \lim_{x\to 0}{\frac{\exp{(x)}-1}{x}}=1 &&\ && \lim_{x\to 0}{\frac{\ln{(1+x)}}{x}} = 1\quad\\ \footnotesize{\sf{\text{Differentiation:}}} && \frac{d}{dx}\exp{(x)} = \exp{(x)} &&\ && \frac{d}{dx}\ln{(x)} = \frac{1}{x}\quad\\ \footnotesize{\sf{\text{Function by limit:}}} && \exp{(x)} = \lim_{n\to\infty}{\left(1+\frac{x}{n}\right)} &&\ &&\lim_{n\to \infty}{n(\sqrt[n]{x}-1)}\quad\\ \footnotesize{\sf{\text{Function by series:}}} && \exp{(x)} = \sum_{n=0}^{\infty}{\frac{x^n}{n!}}\ \small{\forall x \isin \mathbb{R}} &&\ && \ln{(1+x)} = \sum_{n=1}^{\infty}{(-1)^{n-1}\frac{x^n}{n}}\ \small{\forall x\isin \left(-1,1\right]}\quad \end{aligned}

To prove these elementary properties of the exponetial and logarithmic functions, one have to establish the aforementioned properties in a non-circular manner. (Singh, 2021)

There are three ways to accomplish the tasks:

  • Logarithmic function as an integral
  • Exponetial function as a limit

References

  1. Azad, K. (2021). An Intuitive Guide To Exponential Functions & e. https://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e
    [Online; accessed 2021-09-08]
  2. Singh, P. (2021). Theories of Exponential and Logarithmic Functions. https://paramanands.blogspot.com/2014/05/theories-of-exponential-and-logarithmic-functions-part-1.html
    [Online; accessed 2021-09-05]